1,245 research outputs found

    Free-free absorption effects on Eddington luminosity

    Full text link
    In standard treatments the Eddington luminosity is calculated by assuming that the electron-photon cross section is well described by the Thomson cross section which is gray (frequency independent). Here we discuss some consequence of the introduction of free-free opacity in the Eddington luminosity computation: in particular, due to the dependence of free-free emission on the square of the gas density, it follows that the associated absorption cross section increases linearly with the gas density, so that in high density environments Eddington luminosity is correspondingly reduced. We present a summary of an ongoing exploration of the parameter space of the problem, and we conclude that Eddington luminosity in high density environments can be lowered by a factor of ten or more, making it considerably easier for black holes to accelerate and eject ambient gas.Comment: 4 pages, to appear in "Plasmas in the Laboratory and in the Universe: new insights and new challenges", G. Bertin, D. Farina, R. Pozzoli eds., AIP Conference Proceeding

    Active Galaxies and Radiative Heating

    Full text link
    There is abundant evidence that heating processes in the central regions of elliptical galaxies has both prevented large-scale cooling flows and assisted in the expulsion of metal rich gas. We now know that each such spheroidal system harbors in its core a massive black hole weighing approximately 0.13% of the mass in stars and also know that energy was emitted by each of these black holes with an efficiency exceeding 10% of its rest mass. Since, if only 0.5% of that radiant energy were intercepted by the ambient gas, its thermal state would be drastically altered, it is worth examining in detail the interaction between the out-flowing radiation and the equilibrium or inflowing gas. On the basis of detailed hydrodynamic computations we find that relaxation oscillations are to be expected with the radiative feedback quite capable of regulating both the growth of the central black hole and also the density and thermal state of the gas in the galaxy. Mechanical input of energy by jets may assist or dominate over these radiative effects. We propose specific observational tests to identify systems which have experienced strong bursts of radiative heating from their central black holes.Comment: 16 pages, 13 figures, in press on the "Philosophical Transactions of the Royal Society". (Fig1.eps is a low-resolution version). Resized figures, typos in Eq. (2.1) and (2.2) correcte

    On the motion and radiation of charged particles in strong electromagnetic waves. 1 - Motion in plane and spherical waves

    Get PDF
    Motion and radiation of charged particles in strong electromagnetic waves in plane and spherical wave

    Evidence of widespread degradation of gene control regions in hominid genomes

    Get PDF
    Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human¿chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees

    A physically motivated toy model for the BH-spheroid coevolution

    Full text link
    We present a summary of the results obtained with a time-dependent, one-zone toy model aimed at exploring the importance of radiative feedback on the co-evolution of massive black holes (MBHs) at the center of stellar spheroids and their stellar and gaseous components. We consider cosmological infall of gas as well as the mass and energy return for the evolving stellar population. The AGN radiative heating and cooling are described by assuming photoionization equilibrium of a plasma interacting with the average quasar SED. Our results nicely support a new scenario in which the AGN accretion phase characterized by a very short duty-cycle (and now common in the Universe) is due to radiative feedback. The establishment of this phase is recorded as a fossil in the Magorrian and Mbh-sigma relations.Comment: 2 pages. Proceedings of the MPA/MPE/ESO/USM Conference "Growing Black Holes: accretion in a cosmological context", ESO Astrophysics Symposia, A. Merloni, S. Nayakshin and R. Sunyaev ed

    Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Full text link
    The topology of large scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological CDM simulations, galaxies form on caustic surfaces (Zeldovich pancakes) then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as ``ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as ``spirals") are seen currently in a spongelike topology. The topology is measured by the genus (= number of ``donut" holes - number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random-phase initial conditions, but the early forming elliptical galaxies show a shift toward a meatball topology relative to the late forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.Comment: Princeton University Observatory, submitted to The Astrophysical Journal, figures can be ftp'ed from ftp://astro.princeton.edu/cen/TOP
    • …
    corecore